Tutorial 9

March 31, 2016

1. Term by term integration of Fourier series

(a) If $f(x)$ is a piecewise-continuous function on $[-l, l]$, show that $F(x)=\int_{-l}^{x} f(s) d s$ has a full Fourier series that converges pointwise.
(b) If $f(x)$ is a piecewise-continuous function on $[-l, l]$, show that

$$
F(x)=\int_{-l}^{x} f(s) d s=\frac{a_{0}}{2}(x+l)+\frac{l}{n \pi} \sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{l}-b_{n} \cos \frac{n \pi x}{l}+(-1)^{n} b_{n}
$$

where $a_{0}, a_{n}, b_{n}, n=1,2, \cdots$ are Fourier coefficients of $f(x)$ which is given by

$$
\begin{aligned}
& a_{n}=\frac{1}{l} \int_{-l}^{l} \cos \frac{n \pi x}{l} f(x) d x, \quad n=0,1, \cdots \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} \sin \frac{n \pi x}{l} f(x) d x, \quad n=1,2, \cdots
\end{aligned}
$$

Solution:

(a) First $F(x)$ is continuous on $[-l, l]$. Second, $F^{\prime}(x)=f(x)$ is piecewise-continuous on $[-l, l]$. Thus the full Fourier series of $F(x)$ converges pointwise to $F(x)$ on ($-l . l$).
(b) Consider $G(x)=F(x)-\frac{a_{0}}{2}(x+l)$. Note that $a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x=\frac{1}{l} F(l)$, we have $G(-l)=$ $G(l)=0$. Then we can expand $G(x)$ as a continuous function of period $2 l . G^{\prime}(x)=f(x)-\frac{a_{0}}{2}$ is piecewise-continuous on whole line. Thus the full Fourier series of $G(x)$ converges pointwise to $G(x)$ for $-\infty<x<\infty$.
The full Fourier series of $G(x)$ is

$$
G(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi x}{l}+B_{n} \sin \frac{n \pi x}{l}\right)
$$

where the coefficients are

$$
\begin{aligned}
A_{n} & =\frac{1}{l} \int_{-l}^{l} G(x) \cos \left(\frac{n \pi x}{l}\right) d x \\
& =\left.\frac{1}{n \pi} \sin \left(\frac{n \pi x}{l}\right) G(x)\right|_{-l} ^{l}-\frac{1}{n \pi} \int_{-l}^{l} \sin \left(\frac{n \pi x}{l}\right)\left(f(x)-\frac{a_{0}}{2}\right) d x \\
& =-\frac{1}{n \pi} \int_{-l}^{l} \sin \left(\frac{n \pi x}{l}\right) f(x) d x \\
& =-\frac{l}{n \pi} b_{n}, \quad n=1,2, \cdots
\end{aligned}
$$

$$
\begin{aligned}
B_{n} & =\frac{1}{l} \int_{-l}^{l} G(x) \sin \left(\frac{n \pi x}{l}\right) d x \\
& =-\left.\frac{1}{n \pi} \cos \left(\frac{n \pi x}{l}\right) G(x)\right|_{-l} ^{l}+\frac{1}{n \pi} \int_{-l}^{l} \cos \left(\frac{n \pi x}{l}\right)\left(f(x)-\frac{a_{0}}{2}\right) d x \\
& =\frac{1}{n \pi} \int_{-l}^{l} \cos \left(\frac{n \pi x}{l}\right) f(x) d x \\
& =\frac{l}{n \pi} a_{n}, \quad n=1,2, \cdots
\end{aligned}
$$

For the coefficient A_{0}, by taking $x=-l$, we have $0=G(l)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty} A_{n}(-1)^{n}$. Hence

$$
F(x)-\frac{a_{0}}{2}(x+l)=\frac{l}{n \pi} \sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi x}{l}-b_{n} \cos \frac{n \pi x}{l}+(-1)^{n} b_{n}
$$

2. Shifting data method

Consider the following inhomogeneous wave equations:

$$
\left\{\begin{array}{lr}
u_{t t}-c^{2} u_{x x}=F(x) \cos w t & \tag{1}\\
u(0, t)=H \cos w t, & u(l, t)=K \cos w t \\
u(x, 0)=\phi(x), & u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

We wish to subtract a solution of

$$
\left\{\begin{array}{l}
U_{t t}-c^{2} U_{x x}=F(x) \cos w t \\
U(0, t)=H \cos w t, \quad U(l, t)=K \cos w t
\end{array}\right.
$$

A good guess is that U should have the form $U(x, t)=u_{0}(x) \cos w t$, thus $u_{0}(x)$ satisfies

$$
\begin{cases}-w^{2} u_{0}-c^{2} u_{0}^{\prime \prime}=F(x) & \\ u_{0}(0)=H, & u_{0}(l)=K\end{cases}
$$

This is a solvable second order ODE. Thus we can find a special solution $U(x, t)=u_{0}(x) \cos w t$.
Let u be a solution to (1), set $v=u-U$, then v satisfies

$$
\left\{\begin{array}{lr}
v_{t t}-c^{2} v_{x x}=0 & v(l, t)=0 \tag{2}\\
v(0, t)=0, & u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

This is a solvable homogeneous wave problem which we can use the seperation of variables, for example.

3. Invariance Properties of Δ_{3}

(a) Δ_{3} is invariant under translation.
(b) Δ_{3} is invariant under rotation.

Any rotation in three dimensions is given by

$$
x^{\prime}=O x
$$

where $O=\left(o_{i j}\right)$ is an othogonal matrix, that is, $O^{t} O=O O^{t}=I$. Therefore,

$$
\begin{aligned}
\Delta u & =\sum_{i, j=1}^{3} \delta_{i j} u_{i j}=\sum_{i, j=1}^{3} \delta_{i j} \partial_{i}\left(\sum_{k=1}^{3} u_{x_{k}^{\prime}} \frac{d x_{k}^{\prime}}{d x_{i}}\right)=\sum_{i, j=1}^{3} \delta_{i j} \partial_{i}\left(\sum_{k=1}^{3} u_{x_{k}^{\prime}} o_{k i}\right)=\sum_{i, j=1}^{3} \delta_{i j} \sum_{k, l=1}^{3} u_{x_{k}^{\prime} x_{l}^{\prime}} o_{k i} o_{l j} \\
& =\sum_{i, k, l=1}^{3} u_{x_{k}^{\prime} x_{l}^{\prime}} o_{k i} o_{l i}=\sum_{k, l=1}^{3} u_{x_{k}^{\prime} x_{l}^{\prime}} \delta_{k l}=\Delta^{\prime} u
\end{aligned}
$$

where we have used $\sum_{i=1}^{3} o_{k i} o_{l i}=\delta_{k l}$.
(c) For the three-dimensional laplacian

$$
\Delta_{3}=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}
$$

it is natural to use spherical coordinates (r, θ, ϕ). First, consider the chain of variables $(x, y, z) \rightarrow$ (s, ϕ, z) which is given by

$$
\begin{gathered}
x=s \cos \phi \\
y=s \sin \phi \\
z=z
\end{gathered}
$$

By the two-dimensional Laplace calculation, we have

$$
u_{x x}+u_{y y}=u_{s s}+\frac{1}{s} u_{s}+\frac{1}{s^{2}} u_{\phi \phi} .
$$

Second, consider the chain of variables $(s, \phi, z) \rightarrow(r, \phi, \theta)$ which is given by

$$
\begin{gathered}
s=r \sin \theta \\
z=r \cos \theta \\
\phi=\phi
\end{gathered}
$$

By the two-dimensional Laplace calculation, we have

$$
u_{s s}+u_{z z}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

Thus we have

$$
\Delta_{3} u=u_{x x}+u_{y y}+u_{z z}=\frac{1}{s} u_{s}+\frac{1}{s^{2}} u_{\phi \phi}+u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} .
$$

And note that $s=r \sin \theta$ and $u_{s}=u_{r} \frac{\partial r}{\partial s}+u_{\theta} \frac{\partial \theta}{\partial s}=u_{r} \frac{s}{r}+u_{\theta} \frac{\cos \theta}{r}$. Therefore

$$
\Delta_{3} u=\frac{1}{r^{2}} \cot \theta u_{\theta}+\frac{1}{r^{2} \sin ^{2} \theta} u_{\phi \phi}+u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}
$$

(d) Now we want to find a solution which don't change under rotations, that is, which depend only on r. Thus

$$
0=\Delta_{3} u=u_{r r}+\frac{2}{r} u_{r} .
$$

So $\left(r^{2} u_{r}\right)_{r}=0$. It has the solutions $r^{2} u_{r}=c_{1}$. That is, $u=-c_{1} \frac{1}{r}+c_{2}$. The important harmonic function

$$
u(r)=\frac{1}{r}=\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}
$$

is called the fundamental solution of $\Delta_{3} u=0$.

